ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Corrigendum

Corrigendum to "Heterocyclic amines for the construction of peptoid oligomers bearing multi-dentate ligands" [Tetrahedron Lett. 49 (2008) 335]

Galia Maayan a,b, Barney Yoo a, Kent Kirshenbaum a,*

Although the synthesis of compound **2** was successfully conducted on multiple occasions (see Ref. 9), we have now found this procedure to be unreliable. Therefore, we recommend as an alternative approach for incorporating the ligand 1,10-phenanthroline as a peptoid oligomer side chain, the direct use of the commercially available 5-amino-1, 10-phenanthroline. In the oligomer synthesis the two-step submonomer cycle was modified to allow the amine displacement reaction to be performed for 16 h. We were able to incorporate this amine at the N-terminus

Ref. 9:

5-chloro-1,10-phenanthroline (560 mg, 2.6 mmol) and ethanolamine (175 μ l, 2.9 mmol) were added to powder KOH (730 mg, 13 mmol) in DMSO (10 ml) and stirred at 80 °C for 6 h. The reaction mixture was then added to 100 ml of methylene chloride and washed with water (4×). The methylene chloride solution was dried over Na₂SO₄ and the solvent was removed. The brown solid was purified from warm methylene chloride (2×) and 2-(2,2':6',2"-terpyridine-4'-yloxy) ethylamine (442 mg, 1.85 mmol) was obtained a light brown solid in 71% yield and used subsequently without further purification. ¹H NMR δ (400 MHz, DMSO): δ 3.2 (t, 2H, H_{α}), 4.4 (t, 2H, H_{β}), 7.4 (s, 1H, H_{δ}) 7.7 (dd, 2H, $H_{3,8}$), 8.4 (dd, 2H, $H_{4,7}$), 8.8 (dd, 1H, H_{9}) 9.0 (dd, 1H, H_{2}) ppm. ¹³C NMR (400 MHz, CDCl₃): δ 40.0 (C_{α}), 79.5 (C_{β}), 102.0 (C_{6}) 123.3 ($C_{3,8}$), 129.1 (C_{6a}), 130.8 (C_{4a}), 136.2 ($C_{4,7}$), 145.8 and 147.3 ($C_{10a,b}$), 150.1 ($C_{2,9}$) 151.4 (C_{5}) ppm. ESI-MS: m/z = 240.0 (M⁺), 262.1 (M+Na⁺).

^a Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003-6688, USA

^b Molecular Design Institute, New York University, 100 Washington Square East, New York, NY 10003-6688, USA